上海大学学报(自然科学版) ›› 2010, Vol. 16 ›› Issue (3): 221-225.

• 数理化科学 •    下一篇

非保守集中力作用下饱和多孔悬臂梁的非线性弯曲

杨骁,周冬华   

  1. (上海大学 土木工程系,上海 200072)
  • 收稿日期:2009-06-08 出版日期:2010-06-28 发布日期:2010-06-28
  • 通讯作者: 杨骁(1965~),男,教授,博士生导师,博士,研究方向为多孔介质理论、流固耦合. Email:xyang@shu.edu.cn
  • 作者简介:杨骁(1965~),男,教授,博士生导师,博士,研究方向为多孔介质理论、流固耦合. Email:xyang@shu.edu.cn
  • 基金资助:

    上海市自然科学基金资助项目(06ZR14037);国家自然科学基金资助项目(10872124)

Nonlinear Bending of Saturated Poroelastic Cantilever Beam with Nonconservative Concentrated Load

YANG Xiao,ZHOU Dong-hua   

  1. (Department of Civil Engineering, Shanghai University, Shanghai 200072, China)
  • Received:2009-06-08 Online:2010-06-28 Published:2010-06-28

摘要:

 基于孔隙流体仅沿梁轴向运动的微观不可压饱和多孔弹性梁大挠度弯曲数学模型,利用Galerkin截断法,研究固定端不可渗透、自由度可渗透的饱和多孔悬臂弹性梁在自由端处承受突加非保守集中力作用下的拟静态非线性弯曲问题,给出了梁弯曲时挠度、弯矩等随时间的响应以及沿梁轴线的分布.数值结果表明:当载荷较小时,非保守集中力、保守集中力以及线性小挠度理论的结果相差很小;当载荷较大时,非线性大挠度理论的结果小于相应线性小挠度理论的结果,非保守力的结果大于相应保守力的结果,且这种差异随着载荷的增大而增大.同时,在集中载荷突加于梁上时,多孔弹性梁骨架最初不变形,但随着时间的增加,梁的挠度逐渐增大,并最终趋于稳态值,此时多孔梁骨架承担全部的外载荷.

关键词: 多孔介质理论;饱和多孔弹性梁;大挠度;非保守力;Galerkin截断法

Abstract:

Assumption made in the mathematical model for large deflection of microscopic incompressible  saturated poroelastic beam is that fluid in pores can only flow in the direction of a deformed axis. Based on this model, nonlinear quasi-tatic bending of a saturated poroelastic cantilever beam with fixed end impermeable and free end permeable,  with a suddenly applied nonconservative concentrated transverse load at its free end, is investigated with the Galerkin  truncation method. The curves of deflections and bending moments of the beam skeleton are shown with respect to time and the beam axis. Numerical results show that, for small loads, there is little difference between results for the nonconservative  and conservative concentrated load and between large nonlinear and small linear deflection models. For large loads, results of large nonlinear deflection model are smaller than those of small linear deflection model. Results for the nonconservative loads are larger than those for conservative loads. The difference increases with load. Further, when a concentrated load is suddenly applied, deformation of the beam skeleton does not instantly occur. Deflection of the poroelastic beam increases and finally converges to a stationary state in which the poroelastic beam skeleton takes the entire external load.

Key words: theory of porous media; saturated poroelastic beam; large deflection; nonconservative load;Galerkin truncation method

中图分类号: