[1] Neeraj S, Marc D, Katia G, et al. Fluorinated (nano) carbons: CFx electrodes and CFxbased batteries [J]. Energy Technology, 2021, 9(4): 2000605. [2] Liu Y, Su M Y, Gu Z Y, et al. Advanced lithium primary batteries: key materials, research progresses and challenges [J]. The Chemical Record, 2022, 22(10): e202200081. [3] Fang Z, Yang Y, Zheng T L, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte [J]. Energy Storage Materials, 2021, 42: 477-483. [4] Damien D, Sudeep P M, Narayanan T N, et al. Fluorinated graphene based electrodes for high performance primary lithium batteries [J]. RSC Advances, 2013, 3(48): 25702-25706. [5] Zhang Q, Kenneth J T, Esther S T, et al. Applications of carbon nanotubes in CFx electrodes for high-power Li/CFx batteries [J]. MRS Advances, 2016, 1(6): 403-408. [6] Dai Y, Cai S D, Wu L J, et al. Surface modifled CFx cathode material for ultrafast discharge and high energy density [J]. Journal of Materials Chemistry A, 2014, 2(48): 20896-20901. [7] Pasquale F F, Suree S B, Jamie A, et al. Low-temperature fluorination of soft-templated mesoporous carbons for a high-power lithium/carbon fluoride battery [J]. Chemistry of Materials, 2011, 23(20): 4420-4427. [8] Zhu D L, Yuan J C, Wang T, et al. A novel one-step method to prepare N, S co-doped sub-fluorinated carbon electrode materials for ultrahigh-rate lithium-fluorinated carbon battery [J]. Journal of Power Sources, 2022, 551: 232188. [9] Donald F, Jeffrey R. A low temperature electrolyte for primary Li/CFx batteries [J]. Journal of Power Sources, 2009, 188(2): 532-537. [10] Pang C K, Ding F, Sun W B, et al. A novel dimethyl sulfoxide/1,3-dioxolane based electrolyte for lithium/carbon fluorides batteries with a high discharge voltage plateau [J]. Electrochimica Acta, 2015, 174: 230-237. [11] Li Q, Xue W R, Sun X R, et al. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries [J]. Energy Storage Materials, 2021, 38: 482-488. [12] Lam P, Yazami R. Physical characteristics and rate performance of (CFx)n (0.33< x <0.66) in lithium batteries [J]. Journal of Power Sources, 2006, 153(2): 354-359. [13] Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J]. Zeitschrift fur Kristallographie: Crystalline Materials, 2005, 220(5/6): 567-570. [14] John P P, Kieron B, Matthias E. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868. [15] Lejaeghere K, Van-Speybroeck V, Van-Oost G, et al. Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals [J]. Critical Reviews in Solid State and Materials Sciences, 2014, 39(1): 1-24. [16] Stefan G. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [17] Xiao Y K, Jian J H, Fu A, et al. Substantially promoted energy density of Li/CFx primary battery enabled by Li+-DMP coordinated structure [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(19): 6217-6229. [18] Kim K, Jordan K D. Comparison of density functional and MP2 calculations on the water monomer and dimer [J]. The Journal of Physical Chemistry, 1994, 98(40): 10089-10094. [19] Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields [J]. The Journal of Physical Chemistry, 1994, 98(45): 11623-11627. [20] Minsung B, Hyuksoo S, Kookheon C, et al. New high donor electrolyte for lithium-sulfur batteries [J]. Advanced Materials, 2020, 32(52): 2005022. [21] Razamin N A Y, Subban R H Y, Winie T. Efiect of solvent donor number and temperature on the conductivity of liquid electrolyte [J]. Materials Today: Proceedings, 2019, 17: 459-464. [22] Ban J, Jiao X X, Feng Y Y, et al. All-temperature, high-energy-density Li/CFx batteries enabled by a fluorinated ether as a cosolvent [J]. ACS Applied Energy Materials, 2021, 4(4): 3777-3784. [23] Praveen M, Chen H H, Chen X L, et al. Hybrid CFx-Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter [J]. Electrochemistry Communications, 2011, 13(12): 1344-1348. [24] Sheng S Z, Donald F, Jeff W, et al. Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell [J]. Journal of Power Sources, 2009, 187(1): 233-237. [25] Fu A, Xiao Y K, Jian J H, et al. Boosting the energy density of Li/CFx primary batteries using a 1,3-dimethyl-2-imidazolidinone-based electrolyte [J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57470-57480. |