上海大学学报(自然科学版) ›› 2025, Vol. 31 ›› Issue (2): 197-211.doi: 10.12066/j.issn.1007-2861.2575

• •    下一篇

细胞内RNA 与RNA 结合蛋白的动态相分离模拟

郭秀珍, 王书恒, 李康睿, 赵新军   

  1. 1. 伊犁师范大学 物理科学与技术学院 新疆凝聚态相变与微结构实验室, 新疆 伊宁 835000; 2.伊犁师范大学 微纳电传感器技术与仿生器械实验室, 新疆 伊宁 835000; 3.新疆维吾尔自治区人民医院, 泌尿中心, 乌鲁木齐 830000
  • 收稿日期:2023-12-12 出版日期:2025-04-30 发布日期:2025-04-30
  • 通讯作者: 赵新军 E-mail:zhaoxinjun@ylnu.edu.cn
  • 基金资助:
    2024 年度新疆凝聚态相变与微结构实验室开放课题资助项目 (XJDX0912Y2402); 国家自然科学基金资助项目 (22163011)

Modeling the dynamic phase separation of RNA and RNA binding proteins in cells

GUO Xiuzhen, WANG Shuheng, LI Kangrui, ZHAO Xinjun   

  1. 1. Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, Xinjiang, China; 2. Laboratory of Micro-Nano Electro Biosensors and Bionic Devices, Yili Normal University, Yining 835000, Xinjiang, China; 3. Center of Urology, the Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi 830000, China
  • Received:2023-12-12 Online:2025-04-30 Published:2025-04-30

摘要: 细胞内生物大分子相分离在生理与疾病中发挥重要作用. 首先基于扩散动力学、Hill动力学, 提出了一种细胞内核糖核酸 (ribonucleic acid, RNA) 与 RNA 结合蛋白 (RNA-binding proteins, RBPs) 的动态相分离理论. 基于扩散动力学模型, 获得了RNA 与RBPs 多相 (多种相、多重相) 分离特性. 研究发现, 细胞内 RNA 与 RBP 的动态多相分离机制, 主要源于 RNA 与 RBP 生化反应相互作用以及特定的扩散性. 通过生化反应相互作用, 以不同速率扩散的 RNA 与 RBP 通过结合域结合反应, 使得扩散较快的 RNA、RBP 反应聚集, 形成扩散较慢的 RNA-RBP 复合物. 由生化反应作用导致的 RNA 与 RBP 间的扩散关联, 致使RNA 与 RBP 形成多种、多重凝聚相. RNA 与 RBP 生化反应的周期振荡, 会形成振荡传播波 (类似化学波), 波动性会导致 RNA 与 RBP 浓度空间分布不均形成凝聚相, 表明了 RNA与 RBP 凝聚相形成与相分离的耗散结构特性. 可以预测, RNA 与 RBPs 的相分离不仅源自于扩散效应、溶解度的改变, 还与 RNA 与 RBP 生化反应的周期振荡相关. 结合平均场理论,获得了扩散系数与 Flory 相互作用参数的对应关系, 不仅深刻理解体系中多种相互作用与扩散性的联系, 而且更全面揭示了 RNA 与 RBP 多相分离的物理本质. 研究结果符合实验观测,可为后续研究及应用提供参考.

关键词: 非平衡态, 多相分离, 扩散动力学, 平均场理论, 耗散结构

Abstract: Phase separation of intracellular biological macromolecules plays a crucial role in physiology and disease pathogenesis. In this study, we developed a dynamic phase-separation theory for RNA and RNA-binding proteins (RBPs) within cells based on diffusion dynamics and Hill kinetics. Using a diffusion dynamics model, we characterized the multiphase separation between RNA and RBPs, encompassing multiple phases and multi-component phases. Our findings reveal that the dynamic multiphase separation mechanism of RNA and RBPs within cells is primarily governed by biochemical interactions between them and their specific diffusivity properties. In these biochemical interactions, RNA and RBP bind to each other through binding domains, causing RNA and RBP with rapid diffusion to aggregate and form RNA-RBD complexes with slower diffusion. The diffusion correlation is a result of the biochemical reactions to the formation of multiple condensed phases of RNA and RBP. Additionally, our investigation uncovered periodic oscillations in the biochemical reactions involving RNA-RNA complexes as well as RBP-condensed phase formation and phase separation phenomena. Furthermore, through integration with the mean-field theory, we established a correspondence between the diffusion coefficients and Flory interaction parameters, providing profound insights into the relationship be-tween various interactions and diffusivity in the system, while comprehensively elucidating the physical essence of multiphase separation between RNA and RBPs. These findings highlight the dissipative structural characteristics associated with condensates formed by periodic oscillations in biochemical reactions involving RNA-RBP complexes. Importantly, it can be predicted that, apart from diffusion effects or changes in solubility, phase separation between RNA and RBPs may also occur owing to periodic changes in their biochemical reactions. These results are consistent with the experimental results of important factors contributing to intracellular phase separation, and provide a valuable reference for subsequent research endeavors.

Key words: non-equilibrium, multiphase separation, di?usion dynamics, mean-?eld theory, dissipative structure

中图分类号: