上海大学学报(自然科学版) ›› 2020, Vol. 26 ›› Issue (3): 311-327.doi: 10.12066/j.issn.1007-2861.2214
• 交通科学与计算 • 下一篇
收稿日期:
2020-03-19
出版日期:
2020-06-30
发布日期:
2020-07-07
通讯作者:
葛颖恩
E-mail:yege@shmtu.edu.cn
基金资助:
GE Yingen1(), CHEN Zhijian1, ZHANG Peng2
Received:
2020-03-19
Online:
2020-06-30
Published:
2020-07-07
Contact:
GE Yingen
E-mail:yege@shmtu.edu.cn
摘要:
共享交通(shared mobility)是在共享经济日益红火的大背景下发展起来的, 为解决城市交通问题提供了一条新思路. 首先, 梳理了共享交通的内涵和外延; 其次, 就全球对共享交通问题的研究做一个总的概述; 在此基础上, 针对先前的综述型文献或特刊以及对各类主要共享交通方式的研究现状进行分析; 最后, 对共享交通今后的发展进行探索性分析.
中图分类号:
葛颖恩, 陈志建, 张鹏. 共享交通的运营与管理综述[J]. 上海大学学报(自然科学版), 2020, 26(3): 311-327.
GE Yingen, CHEN Zhijian, ZHANG Peng. A review of operations and management of shared mobility[J]. Journal of Shanghai University(Natural Science Edition), 2020, 26(3): 311-327.
[1] |
Drut M. Spatial issues revisited: the role of shared transportation modes[J]. Trans Policy, 2018,66:85-95.
doi: 10.1016/j.tranpol.2018.02.003 |
[2] | Shaheen S, Cohen A. Shared mobility policy briefs: definitions, impacts, and recommendations [R]. Berkeley, CA, USA: University of California, 2018: 32. [2019-03-10]. https://doi.org/10.7922/G27S7KX6. |
[3] | Calderon F, Miller E J. A literature review of mobility services: definitions, modelling state-of-the-art, and key considerations for a conceptual modelling framework[J]. Transport Reviews, 2020,40(3):312-332. |
[4] | Li W, Kamargianni M. Providing quantified evidence to policy makers for promoting bikesharing in heavily air-polluted cities: a mode choice model and policy simulation for Taiyuan China[J]. Transportation Research Part A: Policy and Practice, 2018,111:277-291. |
[5] | PWC. Shared benefits[EB/OL].[2020-03-02]. https://www.pwc.co.uk/issues/megatrends/collisions/sharingeconomy/future-of-the-sharing-economy-in-europe-2016.html. |
[6] | Laporte G, Meunier F, Calvo R W. Shared mobility systems: an updated survey[J]. Annals of Operations Research, 2018,271(1):105-126. |
[7] | le Vine S, Polak J. Introduction to special issue: new directions in shared-mobility research[J]. Transportation, 2015,42:407-411. |
[8] | Stathopoulos A, Sener L N. Editorial: transforming mobility systems with sharing and auto- mation[J]. Transportation, 2017,44(6):1255-1260. |
[9] | Shaheen S A. Editorial: mobility and the sharing economy[J]. Transport Policy, 2016,51:141-142. |
[10] | Ferrero F, Perboli G, Rosano M, et al. Car-sharing services: an annotated review[J]. Sustainable Cities and Society, 2018,37:501-518. |
[11] | Mourad A, Puchinger J, Chu C B. A survey of models and algorithms for optimizing shared mobility[J]. Transportation Research Part B: Methodological, 2019,123:323-346. |
[12] | Calik H, Fortz B A. Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty[J]. Transportation Research Part B: Methodological, 2019,125:121-150. |
[13] | Shu J, Chou M C, Liu Q, et al. Models for effective deployment and redistribution for bicycles within public bicycle-sharing systems[J]. Operations Research, 2013,61:1346-1359. |
[14] | Fricker C, Gast N. Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity[J]. European Journal on Transportation and Logistics, 2016,5:261-291. |
[15] |
Casazza M, Ceselli A, Chemla D. et al. The multiple vehicle balancing problem[J]. Networks, 2018,72(3):337-357.
doi: 10.1002/net.v72.3 |
[16] | Illgen S, Höck M. Literature review of the vehicle relocation problem in one-way car sharing networks[J]. Transportation Research Part B: Methodological, 2019,120:193-204. |
[17] | Xu M, Meng Q. Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile[J]. Transportation Research Part B: Methodological, 2019,128:23-49. |
[18] | Datner S, Raviv T, Tzur M, et al. Setting inventory levels in a bike sharing network[J]. Transportation Science, 2019,53(1):62-76. |
[19] | Kroes J R, Manikas A S, Gattiker T F. Generating efficient rebalancing routes for bikeshare programs using a genetic algorithm[J]. Journal of Cleaner Production, 2020,244:118880. |
[20] |
Bulhões T, Subramanian A, Erdoğan G, et al. The static bike relocation problem with multiple vehicles and visits[J]. European Journal of Operational Research, 2018,264:508-523.
doi: 10.1016/j.ejor.2017.06.028 |
[21] | Zhang D, Yu C H, Desai J, et al. A time-space network flow approach to dynamic repositioning in bicycle sharing systems[J]. Transportation Research Part B: Methodological, 2017,103:188-207. |
[22] | Chiariotti F, Pielli C, Zanella A, et al. A dynamic approach to rebalancing bike-sharing systems[J]. Sensors, 2018,18:512. |
[23] | Repoux M, Kaspi M, Boyaci B, et al. Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations[J]. Transportation Research Part B: Methodological, 2019,130:82-104. |
[24] |
Ciari F, Balac M, Balmer M. Modelling the effect of different pricing schemes on free-floating carsharing travel demand: a test case for Zurich, Switzerland[J]. Transportation, 2015,42(3):413-433.
doi: 10.1007/s11116-015-9608-z |
[25] |
Morency C, Verreault H, Deters M. Identification of the minimum size of the shared-car fleet required to satisfy car-driving trips in Montreal[J]. Transportation, 2015,42(3):435-447.
doi: 10.1007/s11116-015-9605-2 |
[26] | Kopp J, Gerike R, Axhausen K W. Do sharing people behave differently? An empirical evaluation of the distinctive mobility patterns of free-floating car-sharing members[J]. Transportation, 2015,42(3):449-469. |
[27] | Clark M, Gifford K, Anable J, et al. Business-to-business carsharing: evidence from Britain of factors associated with employer-based carsharing membership and its impacts[J]. Transportation, 2015,42(3):471-495. |
[28] | Nourinejad M, Roorda M J. Carsharing operations policies: a comparison between one-way and two-way systems[J]. Transportation, 2015,42(3):497-518. |
[29] | Shaheen S A, Chan N D, Micheaux H. One-way carsharing's evolution and operator perspectives from the Americas[J]. Transportation, 2015,42(3):519-536. |
[30] |
Liu J, Kockelman K M, Boesch P M, et al. Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation[J]. Transportation, 2017,44(6):1261-1278.
doi: 10.1007/s11116-017-9811-1 |
[31] |
Truong L T, de Gruyter C, Currier G, et al. Estimating the trip generation impacts of autonomous vehicles on car travel in Victoria[J]. Transportation, 2017,44(6):1279-1292.
doi: 10.1007/s11116-017-9802-2 |
[32] |
Becker F, Axhausen K W. Literature review on surveys investigating the acceptance of automated vehicles[J]. Transportation, 2017,44(6):1293-1306.
doi: 10.1007/s11116-017-9808-9 |
[33] |
Dias F F, Lavieri P S, Garikapati V M, et al. A behavioral choice model of the use of car-sharing and ride-sourcing services[J]. Transportation, 2017,44(6):1307-1323.
doi: 10.1007/s11116-017-9797-8 |
[34] |
Miramontes M, Pfertner M, Rayaprolu H S, et al. Impacts of a multimodal mobility service on travel behavior and preferences: user insights from Munich's first Mobility Station[J]. Transportation, 2017,44(6):1325-1342.
doi: 10.1007/s11116-017-9806-y |
[35] |
Efthymiou D, Antoniou C. Modeling the propensity to join carsharing using hybrid choice models and mixed survey data[J]. Transport Policy, 2016,51:143-149.
doi: 10.1016/j.tranpol.2016.07.001 |
[36] |
Zoepf S M, Keith D R. User decision-making and technology choices in the US carsharing market[J]. Transport Policy, 2016,51:150-157.
doi: 10.1016/j.tranpol.2016.01.010 |
[37] | Clewlow R R. Carsharing and sustainable travel behavior: results from the San Francisco Bay Area[J]. Transport Policy, 2016,51:158-164. |
[38] |
Shaheen S A, Chan N D, Gaynor T. Casual carpooling in the San Francisco Bay Area: understanding user characteristics, behaviors, and motivations[J]. Transport Policy, 2016,51:165-173.
doi: 10.1016/j.tranpol.2016.01.003 |
[39] | el Genieidy A, van Lierop D, Wasfi R. Do people value bicycle sharing? A multilevel longitudinal analysis capturing the impact of bicycle sharing on residential sales in Montreal, Canada[J]. Transport Policy, 2016,51:174-181. |
[40] | Szeto W Y, Chen A. Special issue on “green urban transportation”[J]. Transportation Research Part B: Methodological, 2017,103:1-4. |
[41] |
Qian X W, Zhang W B, Ukkururi S V, et al. Optimal assignment and incentive design in the taxi group ride problem[J]. Transportation Research Part B: Methodological, 2017,103:208-226.
doi: 10.1016/j.trb.2017.03.001 |
[42] |
Liu W, Zhang F N, Yang H. Modeling and managing morning commute with both household and individual travels[J]. Transportation Research Part B: Methodological, 2017,103:227-247.
doi: 10.1016/j.trb.2016.12.002 |
[43] |
Li Y F, Szeto W Y, Long J C, et al. A multiple type bike repositioning problem[J]. Transportation Research Part B: Methodological, 2016,90:263-278.
doi: 10.1016/j.trb.2016.05.010 |
[44] |
Ho S C, Szeto W Y. A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem[J]. Transportation Research Part B: Methodological, 2017,95:340-363.
doi: 10.1016/j.trb.2016.11.003 |
[45] |
Liu Y, Szeto W Y, Ho S C. A static free-floating bike repositioning problem with multiple heterogeneous vehicles, multiple depots, and multiple visits[J]. Transportation Research Part C: Emerging Technologies, 2018,92:208-242.
doi: 10.1016/j.trc.2018.02.008 |
[46] | Szeto W Y, Shui C S. Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem[J]. Transportation Research Part B: Methodological, 2018,109:176-211. |
[47] | Shui C S, Szeto W Y. Dynamic green bike repositioning problem: a hybrid rolling horizon artificial bee colony algorithm approach[J]. Transportation Research Part D: Transport and Environment, 2018,60:119-136. |
[48] |
Caggiani L, Camporeale R, Ottomanelli M, et al. A modeling framework for the dynamic management of free-floating bike-sharing systems[J]. Transportation Research Part C: Emerging Technologies, 2018,87:159-182.
doi: 10.1016/j.trc.2018.01.001 |
[49] |
Kim C, Dudin S, Dudina O. Queueing network with moving servers as a model of car sharing systems[J]. Mathematics, 2019,7(9):825.
doi: 10.3390/math7090825 |
[50] |
Jian S S, Rey D, Dixit V. An integrated supply-demand approach to solving optimal relocations in station-based carsharing systems[J]. Networks and Spatial Economics, 2019,19(2):611-632.
doi: 10.1007/s11067-018-9401-6 |
[51] |
Qu M, Xiong X F. Identifying key elements in a car-sharing system for constructing a comprehensive car-sharing model[J]. Journal of Intelligent and Fuzzy Systems, 2020,38(2):2297-2309.
doi: 10.3233/JIFS-191146 |
[52] |
Boyac B, Zogrofos K G, Geroliminis N. An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations[J]. Transportation Research Part B: Methodological, 2017,95:214-237.
doi: 10.1016/j.trb.2016.10.007 |
[53] | Heilig M, Mallig N, Schröder O, et al. Implementation of free-floating and station-based carsharing in an agent-based travel demand model[J]. Travel Behavior Society, 2018,12:151-158. |
[54] | Li Q, Liao F, Timmermans H J P, Huang H J, et al. Incorporating free-floating carsharing into an activity-based dynamic user equilibrium model: a demand-side model[J]. Transportation Research Part B: Methodological, 2018,107:102-123. |
[55] | Willing C, Klemmer K, Brandt T, et al. Moving in time and space: location intelligence for carsharing decision support[J]. Decision Support Systems, 2017,99:75-85. |
[56] |
Yoon T, Cherry C R, Jones L R. One-way and round-trip carsharing: a stated preference experiment in Beijing[J]. Transportation Research Part D: Transport and Environment, 2017,53:102-114.
doi: 10.1016/j.trd.2017.04.009 |
[57] | Li W, Kamargianni M. An integrated choice and latent variable model to explore the influence of attitudinal and perceptual factors on shared mobility choices and their value of time estimation[J]. Transportation Science, 2020,54(1):62-83. |
[58] | Strohle P, Flath C M, Garttner J. Leveraging customer flexibility for car-sharing fleet optimization[J]. Transportation, 2019,53(1):42-61. |
[59] | Zhang D, Liu Y, He S C. Vehicle assignment and relays for one-way electric carsharing systems[J]. Transportation Research Part B: Methodological, 2019,120:125-146. |
[60] | 田丽君, 苏瑞超, 黄文彬. 可交易通行权和鼓励合乘政策下的通勤选择[J]. 系统工程理论与实践, 2017,37(12):3193-3200. |
[61] | Yan C Y, Hu M B, Jiang R, et al. Stochastic ridesharing user equilibrium in transport networks[J]. Networks and Spatial Economics, 2019,19(4):1007-1030. |
[62] | Lu W, Quadrifoglio L. Fair cost allocation for ridesharing services—modeling, mathematical programming and an algorithm to find the nucleolus[J]. Transportation Research Part B: Methodological, 2019,121:41-55. |
[63] |
Lei C, Jiang Z T, Ouyang Y F. Path-based dynamic pricing for vehicle allocation in ridesharing systems with fully compliant drivers[J]. Transportation Research Part B: Methodological, 2020,132:60-75.
doi: 10.1016/j.trb.2019.01.017 |
[64] |
Ma R, Zhang H M. The morning commute problem with ridesharing and dynamic parking charges[J]. Transportation Research Part B: Methodological, 2017,106:345-374.
doi: 10.1016/j.trb.2017.07.002 |
[65] |
Xiao L L, Liu T L, Huang H J. On the morning commute problem with carpooling behavior under parking space constraint[J]. Transportation Research Part B: Methodological, 2016,91:383-407.
doi: 10.1016/j.trb.2016.05.014 |
[66] |
Di X, Ma R, Liu H X, et al. A link-node reformulation of ridesharing user equilibrium with network design[J]. Transportation Research Part B: Methodological, 2018,112:230-255.
doi: 10.1016/j.trb.2018.04.006 |
[67] |
Barann B, Beverungen D, Müller O. An open-data approach for quantifying the potential of taxi ridesharing[J]. Decision Support Systems, 2017,99:86-95.
doi: 10.1016/j.dss.2017.05.008 |
[68] |
Yang H, Shao C Y, Wang H, et al. Integrated reward scheme and surge pricing in a ridesourcing market[J]. Transportation Research Part B: Methodological, 2020,134:126-142.
doi: 10.1016/j.trb.2020.01.008 |
[69] | Ordóñez F, Dessouky M M. Dynamic ridesharing[M]. Maryland, USA: INFORMS, 2017: 212-236. |
[70] | Wang X, Agatz N, Erera A. Stable matching for dynamic ride-sharing systems[J]. Transportation, 2018,52(4):850-867. |
[71] |
Wang J P, Ban X G, Huang H J. Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute[J]. Transportation Research Part B: Methodological, 2019,122:390-415.
doi: 10.1016/j.trb.2019.03.006 |
[72] | 周桂良, 包天雯, 黄丽君, 等. 私家车拼车文献综述及车联网环境下拼车展望[J]. 物流工程与管理, 2016,38(6):117-120. |
[73] | Bian Z Y, Liu X. Mechanism design for first-mile ridesharing based on personalized requirements: part I: theoretical analysis in generalized scenarios, part II: solution algorithm for large-scale problems[J]. Transportation Research Part B: Methodological, 2019,120:147-171. |
[74] | Wang H. Routing and scheduling for a last-mile transportation[J]. Transportation, 2019,53(1):131-147. |
[75] | Bian Z Y, Liu X. Mechanism design for first-mile ridesharing based on personalized requirements: part I: theoretical analysis in generalized scenarios, part II: solution algorithm for large-scale problems[J]. Transportation Research Part B: Methodological, 2019,120:172-192. |
[76] |
Wang T Y, Wu D S. Data-driven driver dispatching system with allocation constraints and operational risk management for a ride-sharing platform[J]. Decision Sciences, 2020. DOI: 10.1111/deci.12433.
doi: 10.1002/j.2326-1951.1977.tb01522.x pmid: 11661478 |
[77] |
Wu L Y, Gu W H, Fan W B, et al. Optimal design of transit networks fed by shared bikes[J]. Transportation Research Part B: Methodological, 2020,131:63-83.
doi: 10.1016/j.trb.2019.11.003 |
[78] |
Ho S C, Szeto W Y, Kuo Y H, et al. A survey of dial-a-ride problems: literature review and recent developments[J]. Transportation Research Part B: Methodological, 2018,111:395-421.
doi: 10.1016/j.trb.2018.02.001 |
[79] |
Rahimi M, Amirgholy M, Gonzales E J. System modeling of demand respon-sive transportation services: evaluating cost efficiency of service and coordinated taxi usage[J]. Transportation Research Part E: Logistics and Transportation Review, 2018,112:66-83.
doi: 10.1016/j.tre.2018.02.005 |
[80] |
Daganzo C E, Ouyang Y F. A general model of demand-responsive transportation services: from taxi to ridesharing to dial-a-ride[J]. Transportation Research Part B: Methodological, 2019,126:213-224.
doi: 10.1016/j.trb.2019.06.001 |
[81] |
Nazari F, Noryzoliaee M, Mohammadian A. Shared versus private mobility: modeling public interest in autonomous vehicles accounting for latent attitudes[J]. Transportation Research Part C: Emerging Technologies, 2018,97:456-477.
doi: 10.1016/j.trc.2018.11.005 |
[82] | Stocker A, Shaheen S. Shared automated vehicles: review of business models[C]// International Transport Forum. 2017. DOI: 10.1787/11bcbc7cen. |
[83] |
Iacobucci R, McLellan B, Tezuka T. Modeling shared autonomous electric vehicles: potential for transport and power grid integration[J]. Energy, 2018,158:148-163.
doi: 10.1016/j.energy.2018.06.024 |
[84] |
Narayanan S, Chaniotakis E, Antoniou C. Shared autonomous vehicle services: a comprehensive review[J]. Transportation Research Part C: Emerging Technologies, 2020,111:255-293.
doi: 10.1016/j.trc.2019.12.008 |
[85] |
Tian L J, Sheu J B, Huang H J. The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint[J]. Transportation Research Part B: Methodological, 2019,123:258-278.
doi: 10.1016/j.trb.2019.04.001 |
[86] |
Namazu M, Dowlatabadi H. Vehicle ownership reduction: a comparison of one-way and two-way carsharing systems[J]. Transport Policy, 2018,64:38-50.
doi: 10.1016/j.tranpol.2017.11.001 |
[87] |
Namazu M, Mackenzie D, Zerriffi H, et al. Is carsharing for everyone? Understanding the diffusion of carsharing services[J]. Transport Policy, 2018,63:189-199.
doi: 10.1016/j.tranpol.2017.12.012 |
[88] |
Di X, Ban X G J. A unified equilibrium framework of new shared mobility systems[J]. Transportation Research Part B: Methodological, 2019,129:50-78.
doi: 10.1016/j.trb.2019.09.002 |
[89] |
Djavadian S, Chow J Y J. An agent-based day-to-day adjustment process for modeling `mobility as a service' with a two-sided flexible transport market[J]. Transportation Research Part B: Methodological, 2017,104:36-57.
doi: 10.1016/j.trb.2017.06.015 |
[90] | Yang B, Ren S, Legara E F, et al. Phase transition in taxi dynamics and impact of ridesharing[J]. Transportation Science, 2020,54(1):250-273. |
[91] |
Long J C, Tan W M, Szeyo W Y, et al. Ride-sharing with travel time uncertainty[J]. Transportation Research Part B: Methodological, 2018,118:143-171.
doi: 10.1016/j.trb.2018.10.004 |
[92] |
Wang Y, Szeto W Y. Static green repositioning in bike sharing systems with broken bikes[J]. Transportation Research Part D: Transport and Environment, 2018,65:438-457.
doi: 10.1016/j.trd.2018.09.016 |
[93] |
Wang Z H, Xue M T, Zhao Y D, et al. Trade-off between environmental benefits and time costs for public bicycles: an empirical analysis using streaming data in China[J]. Science of the Total Environment, 2020,715:136847.
doi: 10.1016/j.scitotenv.2020.136847 pmid: 32018100 |
[94] |
Cherry C E, Pidgeon N F. Is sharing the solution? Exploring public acceptability of the sharing economy[J]. Journal of the Cleaner Production, 2018,195:939-948.
doi: 10.1016/j.jclepro.2018.05.278 |
[95] |
Standing C, Standing S, Biermann S. The implications of the sharing economy for transport[J]. Transport Reviews, 2019,39(2):226-242.
doi: 10.1080/01441647.2018.1450307 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||