Journal of Shanghai University >
Finite p-groups with central automorphism almost being inner automorphism
Received date: 2016-01-06
Online published: 2017-10-30
Let G be a finite p-group and let K(G) be a subgroup of G consisting of all elements in G fixed by every central automorphism in G. A necessary and sufficient
condition is given on |Autc(G) : Inn(G)| = |Z(G) : K(G)| for a finite p-group G of class 2. The condition for |Autc(G) : Inn(G)| = p|Z(G) : K(G)| is also studied.
Key words: central kernel; inner automorphism; central automorphism
ZHANG Boru, GUO Xiuyun . Finite p-groups with central automorphism almost being inner automorphism[J]. Journal of Shanghai University, 2017 , 23(5) : 714 -721 . DOI: 10.12066/j.issn.1007-2861.1744
[1] Curran M J. A non-Abelian automorphism group with all automorphisms central [J]. Bull Austral Math Soc, 1982, 26: 393-397.
[2] Glasby S P. 2-groups with every automorphism central [J]. J Austral Math Soc Ser A, 1986, 41: 233-236.
[3] Morigi M. On the minimal number of generators of finite non-Abelian p-groups having an Abelian automorphism group [J]. Comm Algebra, 1995, 23(6): 2045-2065.
[4] 赵立博, 郭秀云. 特定阶的子群都同构且交换的有限p-群[J]. 应用数学与计算数学学报, 2013, 27(4): 517-521.
[5] Curran M J, Mc Caughan D J. Central automorphisms that are almost inner [J]. Comm Algebra, 2001, 29(5): 2081-2087.
[6] AdneyJ E, Yen T. Automorphisms of a p-group [J]. Illinois J Math, 1965, 9: 137-143.
[7] Sharma M, Gumber D. On central automorphisms of finite p-groups [J]. Communications in Algebra, 2013, 41: 1117-1122.
[8] 俞曙霞. 有限交换p 群的自同构群[J]. 广西大学学报(自然科学版), 1983, 25(2): 90-95.
[9] Bidwell J N S, Curran M J, Mc Caughan D J. Automorphisms of direct products of finite groups [J]. Arch Math, 2006, 86: 481-489.
[10] An L J, Ding J F, Zhang Q H. Finite self dual groups [J]. J Algebra, 2011, 341: 35-44.
/
| 〈 |
|
〉 |