Microwave wireless power transmission (MPT) are the key technology of solar power satellite and aircraft in near space, it could also be applied in charging the wireless sensors and harvesting the ambient electromagnetic power. After comparing the microstrip and coplanar waveguide rectenna element and arrays, the demands on receiving antennas and rectifying circuits are summarized. The topological models and truncated Gauss aperture level distribution of the transmitting antenna are analyzed to obtain the maximum microwave beam capture efficiency. Based on above key technique, a C-band MPT system is designed and 35% dc-dc (direct current-direct current) efficiency is evaluated. The remaining problems and the development of MPT technology are discussed at the end.
YANG Xue-xia, ZHOU Hua-wei, ZHOU Yong-jin, MEI Huan
. Research Progress in Microwave Wireless Power Transmission Technologies and System Efficiency Evaluation[J]. Journal of Shanghai University, 2014
, 20(5)
: 541
-549
.
DOI: 10.3969/j.issn.1007-2861.2014.04.003
[1] Brown W C. The history of power transmission by radio waves [J]. IEEE Trans MTT, 1984, 32(9): 1230-1242.
[2] Shinohara N. Power without wires [J]. IEEE Microwave Magazine, 2011, 12(7): 64-73.
[3] 杨雪霞. 微波输能技术概述与整流天线研究新进展[J]. 电波科学学报, 2009, 24(4): 770-779.
[4] Dickinson R M, Brown W C. Radiated microwave power transmission system efficiency measurements [R]. Jet Propulsion Lab, California Inst Technol, Pasadena, CA, USA, Tech Memo 33-727, 1975.
[5] Dickinson R M. Performance of a high-power, 2.388-GHz receiving array in wireless power transmission over 1.54 km [C]// IEEE MTT-S Digest. 1976: 139-141.
[6] Strassner B, Chang K. Highly efficient c-band circularly polarized rectifying antenna array for wireless microwave power transmission [J]. IEEE Trans AP, 2003, 51(6): 1347-1356.
[7] Shinohara N, Matsumoto H. Experimental study of large rectenna array for microwave energy transmission [J]. IEEE Trans MTT, 1998, 46(3): 261-268.
[8] Zopler J C. Wide bandgap solid state amplifiers: enablers for DOD system up-grades and new systems [R]. IEEE MTT-S Int Microwave Symp Workshop Notes, Boston, MA, 2000.
[9] Brown W C. Performance characteristics of the thin-film, etched-circuit rectenna [C]//IEEE MTT-S Digest. 1984: 365-367.
[10] Yoo T W, Chang K. Theoretical and experimental development of 10 and 35 GHz rectennas [J]. IEEE Trans AP, 1992, 40(6): 1259-1266.
[11] 高艳艳, 杨雪霞, 周建永. 新型CPS型低通滤波器在整流天线中的应用[J]. 无线电工程, 2010, 40(9): 32-33.
[12] Parj J Y, Han S M, Itoh T. A rectenna design with harmonic-rejecting circular-sector antenna [J]. IEEE Antennas and Wireless Propagation Letters, 2004, 3(1): 52-54.
[13] Epp L W, Khan A R, Smith R P. A compact dual-polarized 8.51 GHz rectenna for high-voltage (50V) actuator applications [J]. IEEE Trans MTT, 2000, 48(1): 111-120.
[14] 杨雪霞, 薛玉杰. X波段圆极化整流天线的设计与实验[J]. 上海大学学报: 自然科学版, 2007, 13(4): 377-382.
[15] Yang X X, Jiang C, Yang F. A novel compact printed rectenna for data communication systems [J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2532-2539.
[16] Zhou H W, Yang X X. Aperture optimization of transmitting antennas for microwave power transmission systems [C]// IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting. 2014.
[17] Goubau G, Schwering F. On the guided propagation of electromagnetic wave beams [J]. IRE Transactions on Antennas and Propagation, 1961, 9(3): 248-256.
[18] Zepeda P. Modeling and design of compact microwave components and systems for wireless communications and power transmission [D]. Texas: A&M University, 2003.
[19] Oliveri G, Poli L, Massa A. Maximum efficiency beam synthesis of radiating planar arrays for wireless power transmission [J]. IEEE Trans AP, 2013, 61(5): 2490-2499.
[20] Schmelzer D, Long S. A GaN HEMT class F amplifier at 2 GHz with >80% PAE [J]. IEEE J Solid-State Circuits, 2007, 42(10): 2130-2136.