金属材料

快中子增殖反应堆燃料元件包壳材料的晶界工程技术应用展望

展开
  • (上海大学材料研究所, 上海200072)

收稿日期: 2015-03-01

  网络出版日期: 2015-04-29

基金资助

国家重点基础研究发展计划(973 计划)资助项目(2011CB605002); 上海市科委重点支撑资助项目(13520500500)

Feasibility and benefits of applying grain boundary engineering to fuel cladding materials of liquid metal cooled fast breeder reactor

Expand
  • (Institute of Materials, Shanghai University, Shanghai 200072, China)

Received date: 2015-03-01

  Online published: 2015-04-29

摘要

针对钠冷快中子增殖反应堆(简称快堆) 燃料元件包壳材料316 以及15-15Ti 奥氏体不锈钢, 讨论了通过晶界工程(grain boundary engineering, GBE) 技术进一步提高材料抗辐照肿胀以及抗蠕变性能的可行性. 通过GBE 技术能够大幅增加材料中与孪晶相关的低 重合位置点阵(coincidence site lattice, CSL) 晶界比例. 快堆燃料元件包壳在固溶退火处理后还要经过20% 左右的冷加工变形, 目的是在显微组织中引入大量位错, 吸收由辐照产生的点缺陷, 并增加吸收裂变产物的陷阱. 如果在这样的冷加工变形前大幅提高材料的低∑CSL 晶界比例, 使冷加工变形时的位错滑移在具有特殊取向关系的晶粒间的传播以及位错在特殊结构晶界处的堆积排列发生变化, 那么就有可能使冷加工后位错的分布状态有利于吸收更多的由辐照产生的点缺陷, 提高材料抗辐照肿胀的能力.

本文引用格式

夏爽, 周邦新 . 快中子增殖反应堆燃料元件包壳材料的晶界工程技术应用展望[J]. 上海大学学报(自然科学版), 2015 , 21(2) : 152 -159 . DOI: 10.3969/j.issn.1007-2861.2014.05.012

Abstract

Feasibility and benefits of applying grain boundary engineering (GBE) to the fuel cladding material 316 or 15-15Ti austenitic stainless steels of sodium-cooled-fastreactor for reducing void swelling and creep is discussed. GBE can be used to greatly enhance the proportion of low  coincidence site lattice (CSL) grain boundaries that are mainly of annealing twins and its variants. The cladding tubes are normally subjected to 20% cold working after solution annealing before using, which by virtue of providing a dislocation strewn matrix microstructure, contributes to the annihilations of irradiationinduced point defects. If the proportion of low CSL grain boundaries are greatly enhanced prior to the cold working, transfer of slip across the special-structured grain boundaries or pile-up against them during deformation may alter the distribution of dislocations of the microstructure, which may accommodate more defects generated during being irradiated.

参考文献

[1] 张巧玲. 中科院拟定我国核能发展路线图[N]. 科学时报, 2010-12-02.

[2] Sergius T. A technology roadmap for generation IV nuclear energy systems [C]// US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum.

2002.

[3] 徐銤. 我国快堆和第4代先进核能系统[R]. 北京: 中国原子能科学研究院, 2006: 3-4.

[4] Thomas B C, Harold A F, Walt P, et al. Fast breeder reactor programs: history and status [R]. Princeton: International Panel on Fissile Materials, 2010.

[5] International Atomic Energy Agency (IAEA). Structural materials for liquid metal cooled fast reactor fuel assemblies—operational behaviour [M]. Vienna: IAEA Nuclear Energy Series, 2012.

[6] 郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007.[7] 许咏丽. 国产快堆材料与高温钠的相容性研究概况[J]. 核科学与工程, 2008, 28(2): 125-129.

[8] Sandhya R, Rao K B S, Mannan S L. Creep-fatigue interaction behaviour of a 15Cr-15Ni, Ti modified austenitic stainless steel as a function of Ti/C ratio and microstructure [J]. Materials Science and Engineering A, 2005, 392: 326-334.

[9] Latha S, Mathewa M D, Parameswaran P, et al. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes [J]. International Journal of Pressure Vessels

and Piping, 2008, 85: 866-870.

[10] Aritra B, Raju S, Divakar R, et al. High temperature heat capacity of alloy D9 using drop calorimetry based enthalpy increment measurements [J]. International Journal of Thermophysics, 2007, 28(1): 97-108.

[11] 许咏丽, 李军刚, 王家英. 模拟裂变产物腐蚀对国产不锈钢包壳管室温爆破性能的影响[J]. 核科学工程, 1995, 15(4): 337-344.

[12] 许咏丽, 龙斌, 李军刚. 吸氧材料对快堆元件包壳内壁腐蚀的抑制作用[J]. 核科学与工程, 1996, 16(4): 323-330.

[13] 许咏丽, 李军刚, 王家英. 氧势对快堆不锈钢包壳管腐蚀行为的影响[J]. 核科学与工程, 1996, 16(3): 250-225.

[14] 张金权, 许咏丽. 中国实验快堆奥氏体不锈钢焊接件与钠蒸气的相容性[J]. 原子能科学技术, 2008, 42(7): 606-612.

[15] Murugan S, Gopal K A, Chaurasia P K, et al. Development & fabrication of D9 pressurised capsule and material irradiation capsule [R/OL]. [2015-01-05]. http://www.igcar.

gov.in/benchmark/Tech/12.tech.pdf.

[16] Jojo J, Divakar R, Venkiteswaran C N, et al. Performance assessment of MOX fuel with 20% cold-worked alloy D9 cladding and wrapper irradiated in FBTR [C]// International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios. 2013:1-22.

[17] Randle V. Twinning-related grain boundary engineering [J]. Acta Mater, 2004, 52: 4067-4081.

[18] Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res Mech, 1984, 11: 47-84.

[19] Brandon D G. The structure of high-angle grain boundaries [J]. Acta Metall, 1966, 14: 1479-1484.

[20] Berger A, Wilbrandt P J, Ernst F, et al. On the generation of new orientations during recrystallization: recent results on the recrystallization of tensile-deformed fcc single

crystals [J]. Prog Mater Sci, 1988, 32: 1-95.

[21] Cayron C. Multiple twinning in cubic crystals: geometric/algebraic study and its application for the identification of the 3n grain boundaries [J]. Acta Cryst A, 2007, 63: 11-29.

[22] Xia S, Zhou B X, Chen W J. Grain cluster microstructure and grain boundary character distribution in alloy 690 [J]. Metall Mater Trans A, 2009, 40: 3016-3030.

[23] Lin P, Palumbo G, Erb U. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600 [J]. Scripta Metall Mater, 1995, 33: 1387-1392.

[24] Lehockey E M, Limoges D, Palumbo G, et al. On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering [J]. J Power Sources,

1999, 78: 79-83.[25] Lehockey E M, Palumbo G. On the creep behaviour of grain boundary engineered nickel [J].Materials Science and Engineering: A, 1997, 237(2):168-172.

[26] Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary

engineering [J]. Acta Mater, 2002, 50(9): 2331-2341.

[27] Kumar M, Schwartz A J, King W E. Intergranular degradation assessment via random grain boundary network analysis: US, NO09/780, 089 [P]. 2001-02-09.

[28] Duh T S, Kai J J, Chen F R. Effects of grain boundary misorientation on solute segregation in thermally sensitized and proton-irradiated 304 stainless steel [J]. J Nucl Mater, 2000, 283: 198-204.

[29] Sumantra M, Bhaduri A K, Subramanya S V. One-step and iterative thermo-mechanical treatments to enhance 3n boundaries in a Ti-modified austenitic stainless steel [J]. J Mater

Sci, 2011, 46: 275-284.

[30] Johnston W G, Rosolowsk J H, Turkalo A M, et al. Journal of nuclear materials [J]. J Nucl Mater, 1973, 48(3): 330-338.

[31] Josh K, Eftink B P, Cui B, et al. Dislocation interactions with grain boundaries [J]. Current Opinion in Solid State and Materials Science, 2014, 18: 227-243.

[32] Sekine M, Sakaguchi N, Endo M, et al. Grain boundary engineering of austenitic steel PNC316 for use in nuclear reactors [J]. J Nucl Mater, 2011, 414: 232-236.

[33] Lim Y S, Kim J S, Kim H P, et al, The effect of grain boundary misorientation on the intergranular M23C6 carbide precipitation in thermally treated alloy 690 [J]. J Nucl Mater, 2004,

335: 108-114.

[34] Li H, Xia S, Zhou B X, et al. The dependence of carbide morphology on grain boundary character in the highly twinned alloy 690 [J]. J Nucl Mater, 2010, 399: 108-113.

[35] Edward M L, Gino P, Lin P K Y, et al. Metallurgical process for manufacturing electrowinning lead alloy electrodes: US, 09/127,715 [P]. 1998-10-03.

[36] Lehockey E M, Palumbo G, Lin P K Y, et al. Metallurgical method for processing nickel-and iron-based superalloys: US, 1007745 [P]. 2000-06-14.

[37] 夏爽, 周邦新, 陈文觉, 等. 提高690 合金材料耐腐蚀性能的工艺方法: 中国, 100400700 [P]. 2008-07-09.

[38] Guyot B M, Richards N L. A study on the effect of cold rolling and annealing on special grain boundary fractions in commercial-purity nickel [J]. Mat Sci Eng A, 2005, 395(1/2): 87-97.

[39] Liu T G, Xia S, Li H, et al. The highly twinned grain boundary network formation during grain boundary engineering [J]. Materials Letters, 2014, 133: 97-100.

[40] Liu T G, Xia S, Li H, et al. Effect of the pre-existing carbides on the grain boundary network during grain boundary engineering in a nickel based alloy [J]. Materials Characterization, 2014, 91: 89-100.

[41] Liu T G, Xia S, Li H, et al. Effect of initial grain size on the grain boundary network during grain boundary engineering in alloy 690 [J]. Journal of Materials Research, 2013, 28: 1165-1176.
文章导航

/