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Abstract The boundary layer flow over a stretching surface in a rotating viscoelastic
fluid is considered. By applying a similarity transformation, the governing partial differ-
ential equations are converted into a system of nonlinear ordinary differential equations
before being solved numerically by the Keller-box method. The effects of the viscoelastic
and rotation parameters on the skin friction coefficients and the velocity profiles are thor-
oughly examined. The analysis reveals that the skin friction coefficients and the velocity
in the x-direction increase as the viscoelastic parameter and the rotation parameter in-
crease. Moreover, the velocity in the y-direction decreases as the viscoelastic parameter
and the rotation parameter increase.
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1 Introduction

The study of the boundary layer flow over a stretching surface has attracted the attention
of many investigators since it was first introduced by Crane[1]. The astonishing development in
this study is mainly due to its numerous applications in engineering and industrial processes.
The cooling of an infinite metallic plate in a cooling bath, the aerodynamic extrusion of plastic
sheets, the paper production, the metal spinning, and drawing a plastic film are examples of
such flows in industry. The development of this problem was initiated analytically by Crane[1]

when studying the two-dimensional stretching of a surface in a quiescent fluid. The three-
dimensional case of this problem was solved by Wang[2]. Afterwards, many investigations of
this type of flow are discussed in various aspects, and the closed analytical form was obtained
as well as the numerical solutions. The problem of flow due to a stretching sheet has been
continued by Zhu et al.[3], who obtained the analytical solutions using the homotopy analysis
method (HAM). Wang[4] solved the steady two-dimensional stretching surface in a rotating
fluid using a perturbation method to obtain self-similar solutions. Takhar et al.[5] considered a
similar problem in the presence of a magnetic field and solved the problem numerically using
a difference-differential method. Later, Rajeswari and Nath[6] and Nazar et al.[7] extended the
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problem considered by Wang[4] to the unsteady flow. Recently, Abbas et al.[8] extended the
work of Nazar et al.[7] to the unsteady magnetohydrodynamic (MHD) and heat transfer on a
stretching surface in a rotating fluid.

The flow of a viscoelastic fluid has attracted the attention of many researchers. One of
the significant contributions in this area was given by Rajagopal et al.[9], who investigated
numerically the viscoelastic fluid flow over a stretching sheet and obtained similarity solutions
without taking into consideration the heat transfer aspect. The analytical solution to this
problem was given by Troy et al.[10]. Quite recently, Cortell[11] analyzed the effect of the viscous
dissipation on the viscoelastic fluid flow and heat transfer over a stretching sheet. Moreover,
Hayat et al.[12] studied the three-dimensional flow of a viscoelastic fluid over a stretching surface
and obtained the analytical solutions by the HAM.

To date, only a few investigations have focused on the study of flow in a rotating viscoelastic
fluid. Motivated by this fact, in the present paper, we study a steady boundary layer flow due
to a stretching surface in a rotating viscoelastic fluid. By means of the appropriate similar-
ity transformation, the governing partial differential equations are transformed into ordinary
differential equations before being solved numerically by the Keller-box method, which is well
described in the book by Cebeci and Bradshaw[13]. To validate the obtained numerical results,
comparisons are made with those of Wang[4] and Nazar et al.[7] for the steady state case when
the viscoelastic parameter is absent.

2 Problem formulation

Consider a steady, laminar, and incompressible fluid flow caused by a stretching sheet in a
rotating viscoelastic fluid as shown in Fig. 1. It is assumed that the surface is stretched in the
x-direction such that the x component of the velocity varies linearly along it, i.e., uw(x) = ax,
where a is a positive constant. Due to the Coriolis force, the fluid motion is three-dimensional.
Here, u, v, and w are the velocity components in the direction of the Cartesian axes x, y, and
z.

Fig. 1 Physical model and coordinate system

Under the usual boundary layer approximations, the flow is governed by the following equa-
tions (see Wang[4] and Hayat et al.[12]):
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subjected to the following boundary conditions:
⎧
⎪⎪⎨
⎪⎪⎩

u = uw(x) = ax, v = 0, w = 0 at z = 0,

u → 0, v → 0,
∂u

∂z
→ 0,

∂v

∂z
→ 0 as z → ∞,

(4)

where ν is the kinematic viscosity expressed as

ν =
μ

ρ
,

μ is the dynamic viscosity, ρ is the fluid density, Ω is the angular velocity about the z-axis, and
k0 is the material fluid parameter. We look for the solution to Eqs. (1)–(3) of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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u = axf ′(η),

v = axg(η),

w = −(aν)
1
2 f(η),

η =
(a

ν

) 1
2
z,

(5)

where primes denote differentiation with respect to η.
Substituting Eq. (5) into Eqs. (1) and (2), we can get the following ordinary differential

equations:

f ′′′ + ff ′′ − (f ′)2 + 2λg + K(ff (4) − 2f ′f ′′′ + (f ′′)2) = 0, (6)

g′′ + fg′ − f ′g − 2λf ′ + K(fg′′′ − (f ′′)2 − 2f ′g′′) = 0, (7)

and the boundary conditions (2) become

⎧
⎨
⎩

f(0) = 0, g(0) = 0, f ′(0) = 1,

f ′(∞) = 0, g(∞) = 0, g′(∞) = 0, f ′′(∞) = 0.

(8)

Here, K is the dimensionless viscoelastic parameter, and λ is the dimensionless parameter
signifying the relative importance of the rotation rate to the stretching rate, which are defined
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as follows:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
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k0a

ν
,

λ =
Ω
a

.

The physical quantities of interest are the skin friction coefficients along the x- and y-
directions, i.e., Cfx and Cfy, which are defined as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
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ρu2
w

,
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w

,

(9)

where τwx is the surface shear stress along the x-direction, and τwy is the surface shear stress
along the y-direction, which are defined as
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Using the variables in Eq. (5), we can obtain

⎧
⎪⎨
⎪⎩

(Rex)
1
2 Cfx = f ′′(0),

(Rex)
1
2 Cfy = g′(0),

(11)

where Rex is the local Reynolds number,

Rex =
uwx

ν
.

3 Results and discussion

The nonlinear ordinary differential equations (4) and (5) subjected to the boundary condi-
tions (6) were solved numerically using a finite-difference scheme which is known as the Keller-
box method[13–14]. The results presented in a table and several graphs illustrate the influence of
the dimensionless viscoelastic parameter K and the ratio of the rotation rate to the stretching
rate λ on the skin friction coefficient and the similarity velocity profiles both along the x- and
y-directions. In order to validate our findings, the case when K = 0 (the regular fluid) is also
considered, and the results are compared with those reported by Wang[4] and Nazar et al.[7] as
presented in Table 1 for different values of the skin-friction coefficient in the x- and y-directions,
f ′′(0) and g′(0), respectively. It is found that the results show favorable agreement.
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Table 1 Values of (Rex)
1
2 Cfx and (Rex)

1
2 Cfy for different values of λ when K = 0

λ
(Rex)

1
2 Cfx (Rex)

1
2 Cfy

Wang[4] Nazar et al.[7] Present results Wang[4] Nazar et al.[7] Present results

0.0 –1.000 0 –1.000 0 –1.000 0 0.000 0 0.000 0 0.000 0
0.2 – – –1.033 1 – – –0.238 5
0.4 – – –1.100 9 – – –0.431 0
0.5 –1.138 4 –1.138 4 –1.138 4 –0.512 8 –0.512 8 –0.512 8
0.6 – – –1.176 4 – – –0.587 4
0.8 – – –1.251 8 – – –0.720 4
1.0 –1.325 0 –1.325 0 –1.325 0 –0.837 1 –0.837 1 –0.837 1
1.2 – – –1.395 6 – – –0.942 0
1.4 – – –1.463 4 – – –1.037 9
1.6 – – –1.528 7 – – –1.126 5
1.8 – – –1.591 6 – – –1.209 3
2.0 –1.652 3 –1.652 3 –1.652 3 –1.287 3 –1.287 3 –1.287 3
3.0 – – –1.928 9 – – –1.624 8
4.0 – – –2.171 6 – – –1.905 4
5.0 – – –2.390 1 – – –2.150 6

Figures 2 and 3 depict the effects of the viscoelastic parameter K on the similarity velocity
profiles f ′(η) and g(η) in the x- and y-directions, respectively. The velocity profiles for different
values of the viscoelastic parameter K, in both directions, satisfy the far field boundary condi-
tion asymptotically, and thus support the validity of the obtained numerical results. In Fig. 2,
we note that the velocity increases as the parameter K increases. This is due to the fact that
the viscoelastic fluid accelerates the fluid motion, which increases the boundary layer thickness,
and thus increases the velocities in both the x- and y-directions as presented in Figs. 2 and 3.
As presented in Fig. 2, for large values of K, the velocities decay monotonically exponentially,
while for zero value of K, the decay is oscillatory.

Fig. 2 Similarity velocity profiles in x-
direction, f ′(η), for different values
of K when λ = 1

Fig. 3 Similarity velocity profiles in y-direction,
g(η), for different values of K when λ=1

The effects of the rotation parameter λ on the similarity velocity profiles in the x- and
y-directions, f ′(η) and g(η), are presented in Figs. 4 and 5, respectively. The velocity profiles
in both directions satisfy the boundary conditions and are represented by the smooth curve
for different rotation parameter λ. Figure 4 indicates that the similarity velocity in the x-
direction, f ′(η), decreases with the increase in the rotation parameter λ. On the physical
aspect, the rotation parameter λ decreases the flow motion of the entrained fluid, as denoted
in the decrease in f ′(η). For small values of λ, the velocities decay oscillatory, while for large
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λ, the decay is monotonically exponentially. The similar observation was reported by Wang[4]

and Nazar et al.[7].

Fig. 4 Similarity velocity profiles in x-
direction, f ′(η), for different values
of λ when K = 1

Fig. 5 Similarity velocity profiles in y-direction,
g(η), for different values of λ when K=1

The typical results for the variations of the skin friction coefficients in the x- and y-directions,
(Rex)

1
2 Cfx and (Rex)

1
2 Cfy, are illustrated in Figs. 6 and 7 against λ for some particular values

of K. These figures show that the values of (Rex)
1
2 Cfx and (Rex)

1
2 Cfy increase as K increases.

It is also observed from Figs. 6 and 7 that the values of |(Rex)
1
2 Cfx| and |(Rex)

1
2 Cfy| increase as

the rotation parameter increases, suggesting that the rotation parameter affects the skin friction
coefficient in both directions. It can be seen that there are large increases in the magnitudes of
(Rex)

1
2 Cfx and (Rex)

1
2 Cfy for a regular fluid (K = 0). Moreover, for the case of the viscoelastic

fluid (K > 0), the figure shows a slight increase in the magnitude of (Rex)
1
2 Cfx within a certain

range of λ. Figure 7 shows that the magnitude of (Rex)
1
2 Cfy increases dramatically for K = 0

(the regular fluid) which leads to more steep profiles. In contrast, for the viscoelastic fluid,
the variations of the skin friction coefficient in the y-direction increase steadily. This is known
from the fact that the fluid motion is accelerated due to the increase in K (see Figs. 2 and 3).
Therefore, the inclusion of the viscoelastic parameter increases the velocity and the boundary
layer thickness, which results in the decrease in the velocity gradient at the surface and the
increase in the skin friction coefficient in both directions as shown in Figs. 6 and 7.

Fig. 6 Variation with λ of skin friction coeffi-

cient along x-direction, (Rex)
1
2 Cfx, for

different values of K

Fig. 7 Variation with λ of skin friction coeffi-

cient along y-direction, (Rex)
1
2 Cfy, for

different values of K
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The variations of (Rex)
1
2 Cfx and (Rex)

1
2 Cfy with the viscoelastic parameter K for some

values of the rotation parameter λ are depicted in Figs. 8 and 9. In general, the obtained results
point out that the values of |(Rex)

1
2 Cfx| and |(Rex)

1
2 Cfy| increase as the rotation parameter

increases. This behavior is in agreement with the steady state flow considered by Wang[4] and
Nazar et al.[7].

Fig. 8 Variation with K of skin fric-
tion coefficient along x-direction,

(Rex)
1
2 Cfx, for different values of λ

Fig. 9 Variation with K of skin friction coeffi-

cient along y-direction, (Rex)
1
2 Cfy , for

different values of λ

4 Conclusions

The steady laminar boundary layer flow over a stretching surface in a rotating viscoelastic
fluid is investigated. The governing partial differential equations are solved numerically using
the well-known implicit finite difference scheme known as the Keller-box method. Numerical
results for some values of the viscoelastic parameter K and the rotation parameter λ are tabu-
lated and graphically presented. The values of the skin friction coefficients are compared with
the results available in the literature for K = 0 (the regular fluid) in order to validate the
obtained numerical results, which show good agreement. The skin friction coefficients and the
similarity velocity profiles in both directions are notably affected by the velocity distributions
of the stretching surface in the x-direction, the viscoelastic parameter, and the rotation param-
eter. The skin friction coefficients in both directions increase as the viscoelastic parameter K
and the rotation parameter λ increase. The similarity velocity in the x-direction increases as K
and λ increase. However, the opposite behaviors are observed for the velocity in the y-direction.
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